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By means of the transfer-matrix technique, we present an analytical solution of the edge states localized at
the lateral zigzag edge of a semi-infinite graphene nanoribbon. The electric field tuning on the energy level, the
localized length, and the local electron probability distribution of an edge state is then studied in detail. The
dependence of the edge state on the size of the ribbon, the presence of impurities, and the structural variation
in the lateral edge is discussed. The physical natures of some previous numerical conclusions about the edge
state are clarified. For example, it was previously expected that any edge state cannot survive while the width
of the graphene nanoribbon becomes smaller than three times of the lattice constant and whenever such a width
increases by triple lattice constants, one more edge state is added. The physical reasons of these issues can be
intuitively seen in our analytical treatment on the edge states.
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I. INTRODUCTION

Graphene, an atomically thin graphitic sheet,1 is currently
a research-intensive subject since it presents many unique
electronic properties.2–4 For example, the existence of local-
ized states at zigzag edge is a typical electron characteristic
of graphene structures.5–16 This kind of edge state was theo-
retically anticipated5,6 much earlier than the first acquirement
of graphene sample.1 And it is experimentally observed
recently.8,9 Numerous works demonstrate that the edge state
appears commonly in graphene single5–7 and multiple
layers,10,11 graphene nanostructures12 or around a topological
defect,13 as long as an edge is terminated in a zigzag type.
Many interesting phenomena in graphene prove to be inti-
mately associated with the edge state, e.g., the valley-filtered
transport14 and magnetism.12,15,16

Although edge states in graphene have drawn much atten-
tion, some relevant issues deserve further investigation. For
example, the size and edge-disorder dependence of the edge
states in graphene nanostructures, the tunability of the energy
level and localization length of an edge state by an exerted
electric or magnetic field. Recently, the tight-binding and ab
initio calculations agree on that an edge state appear only if
the width of the zigzag edge exceeds three multiple of the
lattice constant.6,12,16 But a clear physical explanation about
this numerical conclusion is yet lacking. In addition, to study
the size dependence of edge states in graphene nanoribbon,
the periodic boundary condition �PBC� is often employed to
simplify the theoretical treatment.6,7 However, such a bound-
ary condition is only appropriate to a nanotube. Its applica-
bility to a graphene nanoribbon needs a detailed inspection.

In this paper, we derive an analytical solution about the
edge states localized at the lateral zigzag edge of a semi-
infinite armchair-edged graphene nanoribbon �SIGNR�,
based on the transfer-matrix theory. Thus, the external field
tuning, the size dependence, and edge-disorder effect on the
edge state can be studied in a unified way. In addition, we
will adopt two distinct kinds of boundary condition to de-
scribe the electron confinement in the transverse direction.
The first, called the natural boundary condition �NBC�, is to
assume that just beyond the upper and bottom armchair

edges there are the hard walls where the electron probability
amplitudes vanish. The NBC has succeeded in describing the
subband structures of infinite graphene nanoribbons.17 The
other one is the aforementioned PBC. It assumes that the
uppermost and downmost atoms in one zigzag line in the
vertical direction are exactly the same one. In fact, under the
PBC, the graphene nanoribbon is equivalent to a carbon
nanotube. Obviously, this is not a reasonable treatment, es-
pecially for the small size ribbon, though it is often em-
ployed to study the edge states.6,7 By means of the transfer-
matrix technique, we derive an analytical solution about the
edge states. Thereby the quantitative difference of the edge
state properties obtained by the two boundary conditions can
be seen clearly. Meanwhile, the physical picture about the
edge states can be seen intuitively.

II. TRANSFER MATRIX AND EDGE STATES IN A
PERFECT SIGNR

The honeycomb lattice of the semi-infinite graphene nan-
oribbons considered by us is illustrated in Fig. 1�a�. Its width
is characterized by N, the number of the closed hexagons in
a periodic unit. To explore the edge states localized in the
vicinity of the lateral zigzag edge, we attempt to solve the
Schrödinger equation HC=EC in the tight-binding represen-
tation, where E is the electron eigenenergy and the Hamil-
tonian in the nearest-neighbor approximation is given by

H = �
�

�������� + �
��,���

�− t�������� , �1�

where �� denotes the on-site energy of a carbon atom labeled
by the index �, ��� stands for the Wannier state localized at
the �th atom, the notation �� ,��� means the summation is
restricted within the nearest-neighbor atomic pairs, and t de-
notes the corresponding hopping energy. The wave function
�C� is a column matrix consisting of all the electron prob-
ability amplitudes, denoted by cln

L , appearing at every atom.
As labeled in Fig. 1�a�, any atomic position is exclusively
determined by the set of index �Lln�, i.e., �= �Lln�. Thus the
original Schrödinger equation can be separated into the fol-
lowing set of equations:
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. . . , �2�

where the column matrix �cl
L� consists of the electron prob-

ability amplitudes in the given layer �Ll� �below we can like-
wise use the notation �cL� to denote the column matrix of the
electron probability amplitudes in the Lth unit cell. As done
above, we always use the notations �¯ � and �¯ � to denote,
respectively, a matrix and a column matrix in expressions

concerned for clarity�. �Hll�
LL�� stands for a matrix describing

the interaction between �Ll� and �L�l�� layers, whose matrix

elements are given by �Hll�
LL��nn�= �Lln��E−H��L�l�n��. Fol-

lowing such a definition, to take the N=3 SIGNR shown in
Fig. 1�a�, for example, under PBC we have

�Hll
LL� = EI�3� , �3�

�H14
LL+1� = �H23

LL� = tI�3� , �4�

�H12
LL� = �H43

LL� = t	1 1 0

0 1 1

1 0 1

 , �5�

On the other hand, these matrixes under NBC take forms as

�H11
LL� = �H44

LL� = EI�3� , �6�

�H22
LL� = �H33

LL� = EI�4� , �7�

�H23
LL� = tI�4� , �8�

�H41
LL+1� = tI�3� , �9�

�H12
LL� = �H43

LL� = t	1 1 0 0

0 1 1 0

0 0 1 1

 . �10�

In above I�N� denotes an N�N unity matrix. In addition, the
Hermitian nature of the Hamiltonian guarantees the relation-

ship �Hll�
LL��†= �Hl�l

L�L�.
According to the transfer-matrix theory,18,19 we seek to

establish a transfer matrix �T� which connects the electron
probability amplitudes between the adjacent unit cells. In
doing so we start from the following relation:

�c3
1

c2
1 � = 
− �H23

11�−1�H22
11� , − �H23

11�−1�H21
11�

1, 0
��c2

1

c1
1 � . �11�

By the same token we can then establish the connection of
the wave functions between the layer of �L=1, l=4� and its
anterior layers, and finally we obtain the transfer matrix �T�
which connects the electron probability amplitudes in a way
as �c2

2 ,c1
2�T= �T��c2

1 ,c1
1�T. However, such a plausible scheme

fails as applied to the SIGNR shown in Fig. 1�a� since one
cannot invert some Hamiltonian matrixes such as �H12

22� un-
der NBC.

To circumvent such an embarrassment, we start our for-
mulation from an equivalent lattice illustrated in Fig. 1�b�,
rather than the original one of the SIGNR. Such a reduced
lattice is realized by working out the indirect interaction be-
tween �L,1� and �L,4� layers, thereby the layers �L,2� and
�L,3� are dropped. Then the electron Schrödinger equation
evolves into a set of recursive equation,

�W11
11��c1

1� + �W14
11��c4

1� = 0,

�W41
LL��c1

L� + �W44
LL��c4

L� + �W41
LL+1��c1

L+1� = 0,

�W14
L+1L��c4

L� + �W11
L+1L+1��c1

L+1� + �W14
L+1L+1��c4

L+1� = 0

�12�

with L=1,2 , . . . By a straightforward evaluation we obtain

�W11
11� = �H11

11� − �H12
11��H22

11�−1�H21
11� − �H12

11��H22
11�−1�H23

11�

��F�−1�H32
11��H22

11�−1�H21
11� ,

�W44
11� = �H44

11� − �H43
11��F�−1�H34

11� ,

�W41
12� = �H41

12� ,

�W14
11� = �H12

11��H22
11�−1�H23

11��F�−1�H34
11� ,

. . . , �13�

where �F�= �H33
11�− �H32

11��H22
11�−1�H23

11�. For the perfect
SIGNR, we find there are only three different matrixes which
appear in the Schrödinger equation of the reduced lattice

（ ）b
oW

iW

（ ）c
n 1=

iWiW

oW oW oW oW

eWeW

cap
（ ）a

L=1 L=2

1=l 2 43

2

3

FIG. 1. �Color online� �a� Lattice structure of the semi-infinite
armchair-edged graphene nanoribbon with a lateral zigzag edge.
Each unit labeled by L has four layers denoted by l=1, . . . ,4. The
index n labels the individual atom in a specific layer. The atoms
belonging to two distinct sublattices �A and B� are indicated by �

and �, respectively. The lattice constant is denoted by a. �b� The
reduced lattice where only the atoms in l=1 and 4 layers are left.
W� with �= i , e, or o stands for the interaction matrix among these
atoms. �c� An all-armchair-edged ribbon formed by prefixing a cap
to the leftmost zigzag edge of the SIGNR as shown in �a�.
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illustrated by Fig. 1�b�. Thus Eq. �13� reduces to

�Wo��c1
1� + �Wi��c4

1� = 0,

�Wi��c1
1� + �Wo��c4

1� + �We��c1
2� = 0,

�We��c4
1� + �Wo��c1

2� + �Wi��c4
2� = 0,

. . . �14�

In the case of NBC the interaction matrixes in the above
equations are defined as �We�= tI�N�, �Wi�= t3�E2− t2�−1�M�,
and Wo=EI�N�− t2E�E2− t2�−1�M�, where the matrix �M� is
given by

�M� = 	
2 1 0 ¯ �

1 2 1 ¯ 0

0 1 2 0

�

� 0 0 ¯ 2



N�N

�15�

with �=0 and 1 for the NBC and PBC, respectively.
One can find out that under the NBC and PBC the matrix

�M� is equivalent to the tight-binding Hamiltonian of an
N-atomic chain and ring, respectively. By virtue of such a
mapping, we can solve analytically the eigenproblems of the
matrix �M�. Under NBC we have

�M��� j� = � j�� j� �16�

with the component of the eigenvector defined as

�� j�n =� 2

N + 1
sin� j	n

N + 1
� for n = 1, . . . ,N . �17�

And corresponding to each eigenvector �� j�, the eigenvalue
is

� j = 4 cos2� j	

2N + 2
� . �18�

The above eigenequation can be rewritten as ���†�M����
= ���, where ���, being an N�N matrix, is defined as ���
= ���1� , . . . , ��N��. And ���=diag��1 , . . . ,�N� is a diagonal
matrix, consisting of all the eigenvalues of M. In contrast,
under PBC the eigensolution of �M� is given by

�� j�n =� 1

N
exp�i

2j	n

N
� �19�

and

� j = 4 cos2� j	

N
� . �20�

Noting that all the interaction matrixes can be diagonal-

ized in a way as ���†�W�����= �W̃�� with �= i ,e, or o, we can
diagonalize the recursive electron equations of the reduced
lattice given above. It yields

w̃o�j�c̃1
1�j� + w̃i�j�c̃4

1�j� = 0,

w̃i�j�c̃1
1�j� + w̃o�j�c̃4

1�j� + w̃e�j�c̃1
2�j� = 0,

w̃e�j�c̃4
1�j� + w̃o�j�c̃1

2�j� + w̃i�j�c̃4
2�j� = 0,

. . . �21�

for j=1, . . . ,N. The coupling coefficients are given by
w̃e�j�= t, w̃i�j�= t3�E2− t2�−1� j, and w̃o�j�=E− t2E�E2− t2�−1� j.
Notice that c̃l

L�j�= �� j�T�cl
L� is a number, rather than a column

vector. Evidently, corresponding to a given eigenmode of the
matrix �M�, Eq. �21� describes a one-dimensional tight-
binding diatomic chain.

From Eq. �21� we can readily establish a 2�2 transfer
matrix �Tj� which connects the wave-function components of
the adjacent units in a way as �c̃L+1�= �Tj��c̃L� with the short-
hand notation �c̃L�= �c̃4

L , c̃1
L�T. It is given by

�Tj� = 
w̃i
−1w̃o

2w̃e
−1 − w̃i

−1w̃e, w̃ow̃e
−1

− w̃ow̃e
−1, − w̃iw̃e

−1� . �22�

Noting that we will often drop the j index in the relevant
quantities if it does not cause any confusion. To solve the
eigenproblem of the transfer matrix, we obtain
�Tj��V�= �V���� with �V�= �v1 ,v2� and ���=diag�
1 ,
2�,
where vi and 
i with i=1,2 are the eigenvectors and
eigenvalues of the transfer matrix. It should be emphasized
that both vi and 
i depend on the index j and the electron
energy E. From the eigenequation of �Tj� and the
relation �c̃L+1�= �Tj�L�c̃1�, we obtain ��L+1�= ���L��1� with
��L�= �V�−1�c̃L�= ��1

L ,�2
L�T. Alternatively, we can write it as

�i
L+1=
i

L�i
1. Up to now we can see that the essential condi-

tion for the existence of a localized edge state is that at least
one of the two eigenvalues, say 
1, obeys �
1��1. Moreover,
from the definition of Tj we can readily prove that the con-
dition �
1��1 leads consequentially to �
2�
1. Thus, the ex-
istence of an edge state implies a constraint �2

1=0, owing to
the requirement of the wave-function convergence, which
can be clearly seen from �2

L+1=
2
L�2

1 when L→�. The con-
straint is equivalent to �V�21

−1c̃4
1+ �V�22

−1c̃1
1=0, where �V�nn�

−1 de-
notes a specific element of matrix �V�−1. To combine this
constraint with the first relation in Eq. �21� we have


�V�21
−1, �V�22

−1

w̃i, w̃o
��c̃4

1

c̃1
1 � = �D��c̃4

1

c̃1
1 � = 0. �23�

Then we find that det�D�=0 is the sufficient condition for the
existence of an edge state. Our calculation indicates that such
a condition can be satisfied only at the Dirac point. In other
words, all possible edge states only appear at E=0, regard-
less of the width of the ribbon. Such a conclusion is consis-
tent with the prediction by the Dirac equation,20 from which
a transcendental equation, q= p tanh�qLy�, is obtained for the
possible edge state in a finite graphene segment. When
Ly→� it changes into our semi-infinite structure. As a result,
we can infer that E=��p2−q2=0.

To solve the edge state at the Dirac point, the derivation
becomes very simple since the transfer matrix is now diago-
nal �Tj�=diag�� j

−1 ,� j�. By a straightforward derivation, we
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find that corresponding to �� j��1 there is an edge state at
E=0, whose analytical wave function is given by

�C�j�� = �
�c1

1� = �1 − � j�� j�
�c1

L� = � j�c1
L−1�

�c3
L� = − �H32

LL�−1�H21
LL��c1

L�
�c2

L� = �c4
L� = 0.

� . �24�

It can be seen that the localization length and the electron
probability amplitude of an edge state are characterized, re-
spectively, by the eigenvalue � j and eigenvector �� j� of the
matrix �M� or �M��. Whenever more than one eigenvalue
satisfy �� j��1, the edge states at E=0 become degenerate.
But with the relation ���†���=1 one can readily prove the
orthogonality of these degenerate edge states, namely,
�C�j��†�C�j���=� j j�.

With the well-developed formula given above, we can
clarify some issues about the edge states. First of all, we can
assert that the PBC is inappropriate to describe the edge
states in a narrow ribbon. For example, for N=5 ribbon the
NBC gives only one edge state but the PBC says there are
two edge states. A quantitative comparison is made in Fig.
2�a� where the minimal and the subminimal localized lengths
corresponding to two specific edge states are plotted for the
NBC as well as PBC. When N�10 the difference between
the two cases is very notable. Besides, for any even N the
PBC always gives an edge state with � j =0. It is evidently an
unreasonable result. Second, we find that only when N�3 an
eigenvalue of �M� satisfying �� j��1 begins to appear. This
indicates that it is impossible for an edge state to exist in a

narrower ribbon, which accounts for unambiguously the rel-
evant results from the first-principle calculations.12,16 In ad-
dition, we find that the edge states begin to be degenerate
when N�6. And a new edge state is added whenever N
increases by 3. A peculiar case is that when N+1 being a
multiple of 3, the eigenvalue � j =1 appears. This implies that
an extended state exists at the Dirac point. Consequently,
such a ribbon is gapless, hence it presents metallic behavior.
This result agrees completely with the previous theoretical
prediction.6,17 However, density-functional calculation per-
formed recently claimed that the armchair graphene nanorib-
bons always possess finite band gap,21,22 regardless of the
ribbon width. This is due to the C-C bond distortion at the
armchair edges. It has been demonstrated that such an effect
can be modeled by the tight-binding approach by simply
adjusting the hopping energy between the adjacent carbon
atoms at the armchair edges, slightly different from the inte-
rior ones. As a result, the nonzero band gap is produced by
the tight-binding approach, which is quantitatively consistent
with the density-functional result. In Sec. IV, we will discuss
the effect of the C-C bond modification at the armchair edges
on the edge states.

III. EDGE GREEN’S FUNCTIONS OF THE SIGNR

Following the method developed above, we can work out
the analytical expressions about the Green’s functions lo-
cated at the lateral zigzag edge of the SIGNR, referred to as
the edge Green’s functions hereafter. The edge Green’s func-
tions are very useful for the study of electronic transport
through some graphene nanodevices when the present
SIGNR acts as the leads. These Green’s functions are asso-
ciated with the self-energy of the device Green’s function
produced by the semi-infinite graphene leads,23,24 which is
responsible to the finite linewidth of the resonance peaks in
the conductance spectrum. Usually, they are evaluated by
means of the recursive method which is much time consum-
ing for the relatively large size structures. Now we try to
derive the analytical results about the edge Green’s func-
tions. The Green’s function of the SIGNR, defined formally

as Ĝ�E�= �E−H�−1, takes a matrix form in the atomic repre-

sentation. The matrix element is denoted as �G�E�ll�
LL��nn�

= �Lln�G�E��L�l�n��. We can thus define the Green’s function

submatrix, �G�E�ll�
LL��, between two layers �Ll� and �L�l��.

And the edge Green’s functions refer to the elements of the
submatrix concerning the zigzag edge, i.e., �G�E�11

11�nn�. By a
straightforward derivation we find the Green’s function sub-
matrixes satisfy the following equations, similar to Eq. �14�

�Wo��G1
1� + �Wi��G4

1� = 1,

�Wi��G1
1� + �Wo��G4

1� + �We��G1
2� = 0,

�We��G4
1� + �Wo��G1

2� + �Wi��G4
2� = 0,

. . . , �25�
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FIG. 2. �Color online� �a� Comparison of the minimal and sub-
minimal localized lengths corresponding to two edge states calcu-
lated by using the NBC and PBC, respectively. �b� Edge state levels
of the N=9 ribbon tuned by a gate voltage. �c� Localized lengths of
the edge states as a function of the gate voltage for the N=9 ribbon.
�d� The electron probability distribution Pl

L=�n�cl
L�2 in some layers

near the zigzag edge as a function of the distance of the layer away
from the zigzag edge �denoted by x in units of C-C bond length�.
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where we have used the abbreviation �G�E�l1
L1�= �Gl

L�. When

we diagonalize matrix �W�� into ���†�W�����= �W̃�� as be-
fore, we can obtain

	
w̃o�j� w̃i�j�
w̃i�j� w̃o�j� w̃e�j�

w̃e�j� w̃o�j� w̃i�j�
w̃i�j� w̃o�j� w̃e�j�

� � �


�
G̃1

1�j�

G̃4
1�j�

G̃1
2�j�

G̃4
2�j�
]

�
=�

1

0

0

0

]

� �26�

in the above equation, G̃l
L�j�= ��†Gll�

LL��� j j. The coefficient
matrix is tridiagonal. For short we omit the index j, then the
Green’s functions are expressed as

�
G̃1

1

G̃4
1

G̃1
2

G̃4
2

]

� = 	
w̃o w̃i

w̃i w̃o w̃e

w̃e w̃o w̃i

w̃i w̃o w̃e

� � �



−1

�
1

0

0

0

]

� . �27�

To define Di the determinant of the tridiagonal submatrix
except the former i columns and rows of the coefficient ma-
trix, we obtain the following recursive equations:

D0/D1 = w̃o − w̃i
2D2/D1,

D1/D2 = w̃o − w̃e
2D3/D2,

. . . �28�

Considering that the coefficient matrix is infinite, the rela-
tions D0 /D1=D2 /D3 and D1 /D2=D3 /D4 hold true. Then
from Eqs. �27� and �28�, we can readily get the retarded
Green’s function,

G̃1
1�E + i0+� = D1/D0

=
�w̃o

2 − w̃i
2 + w̃e

2� + ��w̃o
2 − w̃i

2 + w̃e
2�2 − 4w̃o

2w̃e
2

2w̃o

.

�29�

Here G̃1
1 is the jth diagonal element of the diagonal matrix

�G̃1
1�. Finally we obtain the analytical expressions about the

retarded edge Green’s functions in matrix form. It is given by

�G1
1�E + i0+�� = ����G̃1

1�E + i0+����†� . �30�

IV. TUNING OF GATE VOLTAGE AND INFLUENCE OF
IMPURITIES ON EDGE STATES

The edge states can be tuned by applying a local electric
field around the lateral zigzag edge. Such an effect can be
studied by our theory developed above. To do so, we mimic
the effect of a gate voltage by changing the on-site energies
of the atoms in some initial units. To be concrete, we set the
on-site energy variation as �ln

L =2−LVg for L=1 to k, with Vg
being the strength of a gate voltage. As a result, the coupling
coefficients w̃�

L in these units are different from those of the
sequent units in that E should be replaced by E−2−LVg. Con-
sequently, the transfer matrix should be established from the
�k+1�th unit. Thus the �D� matrix in Eq. �21�, with
det�D�=0 as the sufficient condition to justify whether the
edge state is allowed, needs to be redefined as the coefficient
matrix of the following set of equations:

w̃o
1�j�c̃1

1�j� + w̃i
1�j�c̃4

1�j� = 0,

w̃i
L�j�c̃1

L�j� + w̃o
L�j�c̃4

L�j� + w̃e
L+1�j�c̃1

L+1�j� = 0,

w̃e
L�j�c̃4

L�j� + w̃o
L+1�j�c̃1

L+1�j� + w̃i
L+1�j�c̃4

L+1�j� = 0,

�V−1�21c̃4
k+1 + �V−1�22c̃1

k+1 = 0 �31�

for L=1, . . . ,k.
Then, from the condition det�D�=0 we can analyze the

energy-level variation in the edge states driven by the gate
voltage Vg. Such a result is shown in Fig. 2�b�, from which
we can see that a notable effect of the gate voltage is to relax
the degeneracy of these edge states. And the shift of these
edge state levels depends linearly on the gate voltage. The
shorter the localization length is, the farther the energy level
deviates from the Dirac point. This is a reasonable result
since for an edge state with a shorter localization length than
the others, it is mainly influenced by the gate voltage very
near the zigzag edge where the gate voltage is relatively
stronger. In Fig. 2�c� the localization lengths of the degener-
ate edge states as functions of the gate voltage are shown. In
general, the effect of the gate voltage is to make the edge
states delocalized. In particular, when Vg is large enough, the
edge state with the largest localized length will disappear
�for the case of Vg
0.46t in the figure�. This indicates that a
sufficiently large gate voltage can eliminate the localized
edge state. After determining the energy level of an edge
state in the presence of a gate voltage, we can derive the
corresponding wave function in the following way. At first,
the electron probability amplitudes in the first layer are as-
sumed to take a form as �c1

1�=c0�� j�, then, we can obtain
�c4

1�=−�c1
1�w̃o

1 / w̃i
1 from the recursive electron eigenequation

in the presence of a gate voltage. Just repeating this proce-
dure, we can obtain the electron probability amplitudes in the
sequent layers. Finally, by summing up all the local electron
probabilities, the normalization constant c0 can be deter-
mined. With the obtained wave function, we can calculate
the electron probability distributions in any layer. In Fig. 2�d�
we compare the electron probability distributions of a spe-
cific edge state at the initial layers, which vary as the tuning
of a gate voltage. We can see that the electron is allowed to
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occupy the B sublattice and the localization is weakened as
the increase in the gate voltage.

Now we turn to discuss the influence on the edge states of
the impurities appearing in the initial units and the structural
variation in the lateral edge. The impurities are theoretically
mimicked by introducing random on-site energy of the lattice
points in a few units near the zigzag edge. The structural
variation in the lateral edge is realized by prefixing a specific
cap to the zigzag terminal. For example, by such a connec-

tion, we can obtain a lateral edge of armchair type, as shown
in Fig. 1�c�. The presence of the impurities or the structural
variation at the lateral edge lowers the symmetry of the rib-
bon. As a result, we cannot map the ribbon into a single
mode chain as done above. Instead, we can only establish a
transfer matrix based on the reduced lattice, as shown in Fig.
1�b�. It connects the wave function in a way as
�cL+1�= �T��cL� with the notation �cL�= ��c4

L� , �c1
L��T and is de-

fined as

�T� = 
�Wi�−1�Wo��We�−1�Wo� − �Wi�−1�We�†, �Wi�−1�Wo��We�−1�Wi�†

− �We�−1�Wo� , − �We�−1�Wi�† � . �32�

Noting that we can only use �T� to link the adjacent sublay-
ers beyond the surface region where the impurities or the
edge structural variation occurs. In the surface region we
have to use the original electron eigenequation in recursive
form. For example, when impurities occur only in the first
unit, the relevant equations are given by

�H11
11��c1

1� + �H12
11��c2

1� = 0,

�H21
11��c1

1� + �H22
11��c2

1� + �H23
11��c3

1� = 0,

�H32
11��c2

1� + �H33
11��c3

1� + �H34
11��c4

1� = 0,

�H43
11��c3

1� + �H44
11��c4

1� + �We��c1
2� = 0,

�We��c4
1� + �Wo��c1

2� + �Wi��c4
2� = 0,

. . . , �33�

where the tight-binding Hamiltonian matrixes �Hll�
LL�� can be

readily obtained following the lattice structure. When we ob-
tain the eigensolution of the transfer matrix, denoted as
�U�−1�T��U�= �R�, and inserting it to the relation �cL+2�
= �T�L�c2�, we can obtain the constraints �U� j

−1c2=0 corre-
sponding to the eigenvalues of �T� which satisfy �rj��1. In
fact, these constraints provide us with some new equations
involving �c2�. To combine them with the above equations in
the surface region, we obtain the sufficient condition for any
edge state is allowed, that is, det�D�=0 with �D� being the
coefficient matrix of these combined equations.

In Fig. 3�a�, the determinant det�D� is numerically calcu-
lated as a function of energy E when impurities are present in
the first unit. The zero points of det�D� imply the existence
of an edge state at such an energy position. We can see that
the presence of impurities causes the deviation of the edge
state levels from the Dirac point. And the degeneracy be-
tween the edge states is relaxed if there are many edge states
in a wide ribbon. The energy-level splitting of the edge states
is about 10 percent of the average strength of the impurity
potential ��. When the lateral edge is also of armchair type,

as shown in Fig. 3�b�, det�D� is always nonzero. This implies
that no edge state is allowed in such an all-armchair-edged
ribbon, which is consistent with the assertion that the edge
state is intimately associated with the zigzag edge.17

Finally, as another application of our theory, we discuss
the effect of the C-C bond distortion at the armchair edges on
the edge states localized at the lateral zigzag edge. From the
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FIG. 3. �Color online� The absolute value of the determinant
det�D� as a function of energy E whose zero points give the edge
state levels. �a� The case in the presence of impurities in the first
unit. �b� The case for an all-armchair-edged ribbon. �c� The minimal
and subminimal localized lengths of the edge states with and with-
out the edge bond distortion.
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previous calculations, we know that an appropriate C-C hop-
ping energy at the armchair edges should be modified as t�
=�t with �=1.12.21,22 And such a modification does not alter
the symmetry between the electron-hole subbands of the
armchair nanoribbon, from which we infer that the edge
bond distortion cannot cause the energy-level deviation of
the edge states from the Dirac point. Then, we find that a
couple of Hamiltonian submatrix, �H23

LL� and �H32
LL�, are af-

fected by the edge bond distortion. For the case of N=3, we
have

�H23
LL� = 	

t� 0 0 0

0 t 0 0

0 0 t 0

0 0 0 t�

 . �34�

By a simple analysis, we find that our theory developed in
Sec. II still hold true for the present case. The edge bond
distortion only alters the M matrix in a way as

�M� = 	
1 + �

�
1 0 ¯ 0

1 2 1 ¯ 0

0 1 2 0

�

0 0 0 . . .
1 + �

�



N�N

. �35�

Noting here we need only to consider the case of NBC. As a
result, the localization length of the edge states is expected to
be influenced by the edge bond distortion to some extent. In
Fig. 3�c� we compare the calculated localization length of
two typical edge states for the cases with and without the
edge bond distortion. We can see that the change in the lo-
calization length caused by the edge bond distortion is trivial
and can be ignored safely.

V. SUMMARY

We have investigated the edge state properties located at
the lateral zigzag edge of a semi-infinite graphene nanorib-

bon. By mapping the SIGNR onto a reduced lattice, we are
allowed to establish the transfer matrix which connects the
electronic probability amplitudes of the adjacent unit cells.
Then based on the transfer-matrix theory, we can obtain the
analytical solution about the wave functions of the edge
states under the natural boundary condition. In contrast, we
find that the periodic boundary condition employed in some
previous work is inappropriate to describe the edge states of
the graphene nanoribbons of small size. From our theory the
physical natures of some previous numerical conclusions
about the edge state are clarified, for example, an edge state
is allowed only when the width of the nanoribbon N�3 and
whenever N increases by three lattice constants a new edge
state comes into being. With the same theoretical framework,
we derive the analytical expression about the edge Green’s
functions which are desirable for the study on the electronic
transport through some graphene nanostructures. In addition,
we also find that a localized edge states can be eliminated by
exerting a gate voltage at the lateral zigzag edge. The impu-
rities in the region near the zigzag edge have the effect to
relax the energy degeneracy of the edge states. Noting that
the localized edge states are responsible to the spontaneous
magnetic ordering of many graphene nanostructures, our
findings concerning the gate tuning and impurity effect on
the edge states will influence the magnetic properties of
graphene nanostructures to some extent. Finally, we would
like to point out that our theory can be used to analyze other
effects on the edge state, such as the magnetic field tuning
and the edge roughness. Some interesting results will be re-
ported in future.
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